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Abstract. Bounds to overlap integrals between approximate and exact wavefunctions have 
been derived for arbitrary excited states of a quantum mechanical system, using the 
Lagrange multipliers technique. A new lower bound to the ground state energy which is an 
improvement over the classical result of Temple has also been derived. 

1. Introduction 

In an earlier paper (Cohen and Feldmann 1971, to be referred to as I) we have described 
a general procedure, based on Lagrange’s method of undetermined multipliers, for 
calculating bounds to physical properties of a quantum mechanical system. In I, we 
dealt exclusively with lower and upper bounds which may be derived using a single trial 
function 4 and a given number of moments (H), (If’), . . . of the system Hamiltonian H 
calculated with this 4. The use of a single 4 restricts the applicability of some of our 
earlier results to ground states, or to those excited states which are the lowest of some 
given symmetry species. 

In order to obtain results valid for general excited states, we must use a set of N trial 
functions {+,, ; n = 0 , l  . . . N- l}, one for each of the Nlowest states of given symmetry. 
The overlap integral (+,,I$a) between one such trial function 4,, and an exact eigenfunc- 
tion $a cannot be calculated directly, since $a is unknown, but rigorous bounds to these 
integrals give useful estimates of the accuracy of a particular trial function +,, as an 
approximation to a particular $,,. Clearly, one would wish to have - 1 and 
(+,,I$,,,) - 0 (m # n )  for accurate +,,. A lower bound to the ‘diagonal’ overlap integral 
(+,,I$,,) was derived some time ago by Weinberger (1960). The present work extends 
Weinberger’s treatment so as to yield upper bounds to a number of ‘off-diagonal’ 
integrals (4,,1&,) (m f n )  as well as lower and upper bounds to certain sums of such 
overlaps. In addition, we have extended our earlier treatment of bounds to higher 
moments, and have obtained a new lower bound to the energy of the ground state, 
which improves Temple’s (1928) classic result. 

2. Formulation 

We give here only a resum6 of our procedures; full details may be found in I. We 
consider a quantal system with Hamiltonian H, possessing a complete orthonormal set 
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1618 M Cohen and T Feldmann 

of eigenfunctions {&} with corresponding eigenenergies {Ea}. These satisfy 

H+a = Ea+a ; (+*/n*j3)=&p; Ea <E,+I(~  3 0 )  (1) 

and, for simplicity of presentation, we assume that the {&} are real functions, and that 
the energy levels of specified symmetry are non -degenerate. 

We now assume that we have obtained a set of orthogonal approximate solutions 
{+,,} which may be expressed in terms of the eigenfunctions {&} by means of the 
expansions 

+n = ana+a ( n = O ,  1 , .  . .N-1). 
a 

For simplicity of presentation, we take the expansion coefficients {afla} to be real and 
suppress all reference to the continuum. These trial functions {+,,} are used to calculate 
a set of moments (non-diagonal as well as diagonal) of the system Hamiltonian H :  

Some of these moments constitute the constraints on the variation of any quantity Q of 
interest which may be expressed as a function of the variables {ana}. Variation of Q 
with respect to the coefficients {ana} subject to the constraints leads to extremal values 
0 which are sometimes (but not always) maxima or minima. A maximum provides an 
upper bound to Q, a minimum a lower bound. 

Specifically, we consider functions of the general form 

in which the { A , }  are Lagrange multipliers to be determined, and seek solutions of the 
equations 

-- af - 0  ( n  = 0,  1, . . . N- 1; all a) 
aana 

together with the constraint equations 

g m  = O  ( m  = 1 , 2 , .  . . M ) .  (6) 
Any solution of these equations determines an extremal point A = ({Im}, {ana}), while 
the nature of any particular extremum depends on the signs of the roots of the 
determinantal equation (Hancock 1960) 

Here, F and G are matrices with elements given by 

where i and j represent the index pairs na and n’a’ respectively, GT is the transpose of G 
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and I and 0 represent unit and null matrices of appropriate dimensions. A strict 
minimum of Q occurs at A if every root p of equation (7) is positive, and a maximum if 
every root is negative. However, in order to obtain a bound, we do not require a strict 
maximum or minimum at A. It is sufficient for our purposes (cf Chaundy 1935) that the 
non-vanishing roots of equation (7) are of constant sign. 

The following two sections contain applications of the procedure to overlap 
integrals (0 3 )  and to second moments (0 4). The resulting bounds require knowledge of 
the energy levels E, (perhaps from experiment) but they remain rigorous if these 
energies can themselves be bounded from below. This use of empirical data in 
otherwise purely theoretical calculations is almost universally accepted in the quantum 
mechanical bounds literature. 

3. Bounds to overlap 

Here, we seek bounds to overlap integrals a$, given by 

and for generality, we consider 

N -  1 N -  1 
f =  cia;+ 

I =o i = O  

the function 

N- 1 

(Aijgij + pijhij). 
j = O  

Here, the ci are constants to be chosen later, the hij and pi j  are Lagrange multipliers, 
and are elements of symmetric matrices, while the constraints are given by 

In the remaining sections of this paper, we denote diagonal first moments by Ii rather 
than Ii, for simplicity of presentation. The constraints ( 1  1) are sufficient to guarantee 
that for each i, 

Ei S Ii ( 1 2 )  

(Hylleraas and Undheim 1930, MacDonald 1933) but they do nor automatically ensure 
that Ii  SE,+^. We shall assume later that these further conditions are also fulfilled, in 
order to obtain non-trivial bounds. 

At an extremum A, we must satisfy the conditions of constraint (1 1) together with 

N-1 

(+-)A = 0 = 2CicTi,S,, + 2 (&j + &jEa)aja (i = 0 ,  1 ,  . . . N -  1; all a). ( 1 3 )  
j = O  

Thus, for a # p, non-trivial solutions {ci,} exist if and only if 

detlh;,. + pijE, 1 = 0 ( i ,  j = O ,  1 , .  . . N - 1 )  (14) 
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and since the hj, pjj are fixed numbers, there will be a maximum of N distinct values of 
E, which satisfy (14). 

In addition, when a = p, we have 
N-1 

('. +fi . .E 11 B ) d .  JB = -c.d. 1 d ( i = O ,  1 , .  . . N-1). (15) 
j = O  

Thus, (13) is satisfied by N values of a and the given p, or ( N +  1) parameter values in 
all. We shall refer to these parameters collectively as the extremal set, which we denote 
as {a} or as {Ea}. Since there are N functions {4i}, it follows that at most N ( N +  1) 
expansion coefficients dh are non-vanishing, corresponding to the N ( N  + 1) constraints 
(11). 

The extremal values of the multipliers K j  and pij  are obtained by multiplying (13) by 
is,, for some s and summing over {a}. On taking due account of the constraints (1 l ) ,  we 
obtain 

- 
Ai, + f i l sZs  = -~id,pd,p 

Asj + /i,,jZj = -~,cl,pdip 

(i, s = 0, 1 , .  . . N -  l ) ,  (16) 
and since we may interchange i and s in (16), we obtain similarly 

- 
( I ,  s = 0, 1 , .  . . N -  1). (17) 

Hence, since &, = is,, pis = psi we have 
- 

A,, = - ( ~ i Z i  - ~,Z,)ii,pd,p/(Zj - I s )  (i #s) 
(18) 

f i i s  = (ci - cs )Gip&p/(Ii  - 1s 1 
while, when i = s, both (16) and (17) reduce to a single equation: 

- 
I ,  1, I 1 is (i = 0, 1, . . . N -  1). (19) A. .  + f i . . Z .  = -c.d? 

Equation (19), together with equation (13) for any a # p now yields 

while (19) taken together with the same equation (13) for p yields 

These two expressions for pIi  must be identical for all {a} and, for convenience, for all 
choices of the constants c,, c,. Thus we have for each a, both 

1 s  -E ,  d,, 
Zi -E ,  dj, 

I,  - Ep asp 

Z, -E ,  dip 
(all pairs s, i )  --=-- 

and 

Multiplying (22) by &cis,,, summing over {a} and using the constraints (11) we 
obtain when i # s :  

1 - 2  

(i # s). (24) 
- -- 

{a) 4 -Ea l i  - I s  
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Equations (24) together with the constraints Z, a:, = 1, Z, d,,E, = I, are sufficient 2 

to determine all the extremal ualues. We obtain quite generally 

m =O 

The second product is here over the extremal set {a}, excluding the particular y. 
If we eliminate Li,,/dip between equations (22) and (23) we obtain the equations 

The solutions of equations (24) and (26) are identical. 

chosen quite freely. Various possible choices are discussed below. 
Thus, with the a:y given by (25), the coefficients ci, cs occurring in (20), (21) may be 

3.1. Nature of the extrema 

We must now investigate the nature of the extrema given by (25). Using arguments 
similar to those employed in I (see especially the discussion following equation (17b)) it 
may be shown that the determinantal equation (7)  reduces to a squared numerical factor 
multiplying a product of determinants: 

DN(E;p)=de t (&j++i jE-6 i jp (  ( i , j = O ,  1 , .  . . N - 1 )  (27) 

one for each energy Ediferent from the extremal set {E,}. Thus we must determine the 
signs of the latent roots of the matrix @+PE) for all E different from the set {E,}. 

Now each principal minor M, ( E )  of the determinant of (i + P E )  may be written in 
the form 

n-1  

M,(E)=det(i+I;iE),,, =B, n ( E - E ? ) )  ( n  = 1,2,  . . . N )  (28)  

where, using arguments similar to those of MacDonald (1933), it may be shown that the 
latent roots eln)  of M,(E) separate pairs of latent rootsof M,+l(E). Thus, if the highest 
latent root of MN(E) is E,, the sign of M,(E) for every n and for each E > E ,  is 
determined entirely by the sign of B,. 

Now the latent roots of MN(E) are precisely the set E, satisfying equation (14), i.e. 
the extremal set {E,} excluding E,. We now assume that the {I ,  ; i = 0, . . . N - l} are 
bracketed between successive energy levels, so that in general 

i = O  

Ei < I ,  < Ei+l (i = 0, 1, , . . N -  1). (29) 
This implies that the extremal set includes the lowest N energy levels {E, ; CY = 0 . . . 
N - l}, if Ep 3 EN. On the other hand, if Ep G EN-l, the extremal set contains the lowest 
N +  1 energy levels {E, ; CY = 0, . . . N}. 

The coefficient E,, is given explicitly by 

(Po0 4-7.01 Po,, - 1 

C L l O  PI1 . . . /.il,,-l 1 :  B, = det(/i),x,, = 
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and the detailed forms of the &, given by equations (18) and (21) depend on our choice 
of ci, c,. 

3.2. Individual overlaps 

The simplest choice in (10) is ci = 1,  c, = 0 (s # i); we are thus seeking bounds to a single 
overlap integral, (&(&). We obtain the following non-vanishing elements: 

f i b  = Cii,6,,/(Ii -I,) (s # i) (3  1) 

Here, the determinants B,, have non-vanishing off-diagonal elements only in the ith 
row and column and, by suitable ordering, these elements may be brought to the last 
row and column of B N .  Then we need to consider only the signs of 

n-1 

Bn = n P S S  ( n  = 1 ,2 , .  . . N -  1) 
s=o 
S # i  

and 

and using (31), we find the value of the discriminant 

In the appendix equation (A.6)  we obtain an expression for SN and show that SN < 1, so 
that the sign of f i i i  depends only on the sign of (I, - E,). 

From (31), we see that all the pSs will have the fixed sign of (Ii -E,) if and only if 
none of the remaining Is (s # i) lies in the interval containing the pair (I,., ED). We thus 
obtain k e d  sign for aflCL,, and cii and bounds to the corresponding a& in the following 
cases only: 

(36) 
The bounds (34) to (36) are all contained in (25). They remain rigorous if the 

energies E,., E,, are replaced by lower bounds, provided only that the bracketing 
conditions (29) remain valid. We note from equations (34) and (35) that, as I,. 
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approaches Ei, 1 and -* 0 as required. Similarly, equation (36) shows that 
ciL-l,p+ 0 for all f3 3 N as I N - 1  + E N - , .  These are limiting situations in which qbi and 
( P N - I  approach exact eigenfunctions t,bi and + N - l .  The lower bound (34) is Wein- 
berger’s (1960) result; the upper bounds (35) and (36) are new. 

3.3. Sums of overlaps 

In addition to the few individual overlaps a& which are bounded by the corresponding 
extrema1 ci; certain sums can be treated analogously. The simplest example corres- 
ponds to the choice c, = c, = 1, c, = 0 (s # i, j), and we obtain straightforwardly: 

which are obvious generalizations of (31). In this case, we have non-diagonal elements 
in the ith and j th  rows and columns, and, as before, we bring these to the last two rows 
and columns of B N .  This procedure allows us to consider the signs of 

n-1 

B n  = ~ s s  (n = 1 , .  . . N - 2 )  
s =o 
s #1.1 

and 

where 

It may now be shown that 

and 

where we have written 
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From (37), we see that whenever (Ii -E,) and (4 -E,) have the same sign, all the iiss 
have the fixed sign of (Ii -Ep)  provided that none of the remaining I, ( s  # i ,  j )  lies in the 
interval containing Ii, 4 and E,. Under these circumstances, C, iiii and fijj are of the 
same sign as pss, while the discriminant fiiicZi, -6; is clearly positive. We thus obtain 
bounds to the following sums: 

( i  = 0,  1, . . . N -  1) 

( i  =0, 1,. . . N-1) 

(p = N,  N +  1 , .  . .). 

(42) 

(43) 

(44) 

Sums of more than two overlaps may be treated similarly, but the algebra becomes 

2 - 2  2 aj?,+ai+l,ia a i l+  ai+l,i 
2 2 -2 2 

2 2 -2  -2  

q 1 + 2  +ai+l , i+2sai , i+~+ai+l , i+~ 

aN-Z,p+ UN-1,p UN-2.8 + aN-1.g 

cumbersome, and we present only the results: 

a $ s x  a$ and 1 a i s  c (I;. (45) 
i +3 i i q 3 - 1  i s @ - 1  

Clearly, equations (34)-(36) and (42)-(44) are all special cases of (45). 
Unfortunately, no new bounds to individual overlaps result from these sums. 

3.4. Other linear combinations 

We now consider two slightly different choices of the {ci}, which lead to new results. 
First, taking 

(46) 

we obtain 

CLii =(1-a;)/(4-Efi)2, (i =o, 1,. . . N-1) 
and 

f i t ,  = -&ajp/(Ii - Efi )(J - Efi 1 (i # j ) .  

In this case, direct expansion of the determinant B, yields 

where 

n-1  . 
1 

B, =(l-S,) n- (n =1, .  . .N) 
i=o (1, 

n-1 

s, = a;. 
1 =o 

(47) 

(49) 

Here, the B, are clearly all positive and we thus obtain a lower bound for every p :  

Using the results of the appendix equation (A.7) we have explicitly 
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Finally, if we choose 

where E, is any one of the extremal set {E,} except E,, we find 

f i i i  = -6fa/(Ii -E,)* (i = 0, 1 ,  . . . N -  1 )  

and (53) 

f i i j  = -6i,cS,/(Ii - Ea)(lj -Ea)  ( i  # j ) .  

In this case, the diagonal elements of B,, are all negative, but every B,, (n 3 2) vanishes. 
We thus have the upper bounds 

the final expression being simply (26). 
The inequalities (54) thus complement (51). They have been derived recently by 

other means (Cohen and Leopold 1976) and used to obtain certain additional bounds to 
overlaps. 

4. Bounds to the second moment 

Here, we consider the function 

where the constraints are given by (1 l) ,  as before. At an extremum A, we have 

and in this case, non-trivial solutions {a,} exist if and only if 

detlKj + f i @ ,  + 8ik8jkE:l = 0 ( i , j = O ,  1 , .  . . N - 1 ) .  (57) 

This secular equation is of degree (N+ 1) in E,, so that, as in the previous case, there are 
a maximum of (N+ 1) distinct roots. In this case, the extremal set {E,} contains (N+ 1) 
roots; there is no significance to be attached to any particular E,. The extremal values 
of the multipliers K j  and f i i j  are derived exactly as before, and we simply give the results: 

where we use the notations 
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to denote extremal values of the second moments. From (56) when i # k, we have here 

(&i f &EQ)Ciia = -(&k + /&Ea)&. (60) 

Combined with (58),  this implies that 

and the invariance of pii to the choice of any particular a now allows us to repeat the 
arguments which yield equation (22). Furthermore, it is clear from the symmetry of the 
extremal values (25) that we would obtain exactly the same result if, instead of the 
function f k  in (55) ,  we had chosen the function: 

Now, once again using the invariance of ( I k  - Ea)akQ/(Zi -E,)d, together with (24) 
and (1 1) we obtain 

and, interchanging i and k, 

Returning to (56) when i = k and using (58) and (64), we have for each of the (N+ 1) 
extremal values of a, 

Using this result for any two distinct values a and p say, we obtain 

Finally, rewriting (66) for each of the N possible pairs (a, /3) with fixed a, and solving, 
we obtain the extremal value, valid for each i :  

4.1. Nature of the extremum 
The determinantal equation (7) reduces in this case to a squared numerical factor 
multiplying a product of determinants 

&(E; p)=det1Lj +&,E+&6jkE2-&,p( ( i , j = O ,  1,. . .N-1) .  (68) 
The matrix &(E) = (I+&!? +&SjkE2) has ( N +  1) latent roots {Ea}, which we take to 
be the lowest eigenvalues {Ei ;  i = 0, 1, . . . N}. It has non-diagonal elements in the kth 
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row and column only, which we bring to the last row and column as usual. The presence 
of a quadratic term in the k th diagonal position now allows us to write 

&(E) = BN n ( E  - ) 
Q 

where 

BN = n Ai 
i # k  

while the diagonal elements of DN(E) are given explicitly by 

fiii(E - Ii) = ( E  - Ii)ai/(Ii  - Ik) (i # k ) .  (71) 

Thus, we obtain a lower bound if every pii is positive, which will be the case if and only if 
Ii > Ik for all i # k .  Thus we identify Ik with Io, and obtain 

4.2. Generalizations of Temple’s lower bound to the energy 

Rewriting (72), we obtain a lower bound to the ground-state energy: 

This is a generalization of Temple’s (1928) lower bound 

and (73) clearly improves (74) since the bracketing conditions (29) ensure that each 
factor (In - Io)/(En+l -Io)  is less than unity. Furthermore, as each In approaches the 
corresponding exact E,, (73) approaches a limiting value: 

& Eo 3 Io --. 
EN - IO 

The optimal lower bound which might be obtained by this process is seen to be 
r 2  

(75) 

where Eion is the energy of the ionic ground state. 
All these lower bound formulae, (73) to (76), remain valid if the exact excited-state 

energies are replaced by lower bounds, but the bounds are unlikely to be effective unless 
the excited-state energies are known with considerable precision. The numerical 
improvement which may be obtained from (73), (75) or (76) (by comparison with the 
Temple bound (74)) is ultimately limited by the accuracy of &. 

The discussion of the preceding section indicates that in general, no comparable 
rigorous lower bound can be obtained for any excited state energy. But if we assume 
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that the N trial functions {4i; i = 1, . . . N} are all orthogonal to the exact &, we may 
easily obtain the analogue of (73): I 

with corresponding extensions of (75) and (76). 

5. An example 

We now illustrate the results of the two preceding sections with a numerical example. 
We consider the finite symmetric matrix operator (which may be regarded as the 
representation of a physical Hamiltonian in a truncated basis) 

The normalized eigenvectors are easily found to be 

$o=&(L 27 0, -1,  O), $1 = (0 ,0 ,1 ,0 ,  O), 

$3=&1,-1,0,-1,0),  $4=(o ,o ,090 ,  1) (79) 

$2 =&U, 070, 190) 

and the corresponding eigenvalues 

Eo = -2, El = - l ,  E2 = 0, E 3 =  1, E4 = 2. (80) 
We used the trial vectors (these were normalized in the calculations) 

40 = (7,16,0,  -9,4), 41 = (1,  -1,247 - 1 , O ) ,  42 = (49,2,0,47, 12) (81) 
and obtained the results summarized in table 1. Extremal values are based on equations 
(25) and (67) with N = 3; the corresponding exact values were calculated directly. 

TnMe 1. Exact and extrema1 values. 

Extremal 

1 

- 
0.023 
0.001 
0.992t 
0.001$ 
0.005 
0.004 

2 

- 
0.060 
0.001 
0.000 
0.939t 
0-060$ 
0*030$ 

0 
-1.831 

3,980 
0.628 
0,955 
0.0 
0.005 
0.0 
0.040 

Exact 

1 2 
-0.990 0.058 

1 .o 0.126 
0.021 0.123 
0.0 0.001 
0.995 0.0 
0.0 0.968 
0.005 0.0 
0.0 0-030 

~~ 

t Rigorous lower bound. $ Rigorous upper bound. 
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Those individual extrema1 values which are rigorous lower or upper bounds are 
indicated in this table. In addition, the following sums contained in (45) are also 
rigorous bounds: 

U : o + a ~ o = 0 . 9 5 5 3 0 . 9 4 0 = 6 : 0 + 6 ~ 0  
2 a z o +  a&+ U &  = 0.956 3 0.941 = a&+ 6&+ 

U : ,  + 
U &  + 

= 0,995 3 0.992 = 6:1+ 6:l 

= 0.005 S 0.008 = a&+ a&. 

On the other hand, we emphasize that a: is not a lower bound to A?, neither is an 
upper bound to a&. 

In table 2, we display the convergence with increasing N of the rigorous lower 
bounds to the ground-state energy based on (73), and of the ‘limiting’ values based on 
(75). Eflective bounds to the first excited state, based on (77) and the analogue of (75) 
are also displayed. 

Table 2. Convergence of lower bounds to the energy. 

Ground state First excited state 

(75) 
- 

(77) 
- N (73) (75) 

1 -2,587 -2.587 
2 -2,178 -2.174 -1.011 -1.011 
3 -2.063 -2.053 -1.001 -1.001 

Eo = -2.0 
10 = - 1.83 1 

E,=-1.0 
1, = - 0.990 

6. Discussion and condusions 

All the bounds formulae derived in this work (equations (34) to (36), (45) and (72)) 
require as input data calculated first moments { I i }  and exact energies {Ei}.  These latter 
may be known empirically (from experiment) or they may be approximated by lower 
bounds. The results summarized in tables 1 and 2 show that some of our bounds may be 
quite precise. The Lagrange multipliers procedure is clearly capable of providing a 
wide variety of other results, but it is disappointing that our generalization of Temple’s 
(1928) energy bound cannot be applied rigorously to excited states. Further work on 
excited states would be extremely valuable. 
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We derive here explicit expressions for the extremal sums 

and 

Consider the function F ( q )  defined by 

From eqpation (26) of the text, we see that 

F(Ea) = 0 

for each of the N extremal values {E,}. Thus we may write 

F ( q )  = (1 - SN) n (Ea - ?,/n (4 - 7). (A.5) 

Then, assuming that the sum Z:;' &,,/(Ii - 7) is finite when 77 =E,, we have from (A.3) 
and (AS) 

i = O  I at, 

Thus, SN is less than unity unless one of the Ii is equal to E,. 

that the sum ZE;' a$/(I i  - q)2  is finite when q = E,. The result is 
To obtain TN, we differentiate F ( q )  with respect to q and set q =E,, assuming now 
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